Assessment of Density Functional Theory for Describing the Correlation Effects on the Ground and Excited State Potential Energy Surfaces of a Retinal Chromophore Model.
نویسندگان
چکیده
In the quest for a cost-effective level of theory able to describe a large portion of the ground and excited potential energy surfaces of large chromophores, promising approaches are rooted in various approximations to the exact density functional theory (DFT). In the present work, we investigate how generalized Kohn-Sham DFT (GKS-DFT), time-dependent DFT (TDDFT), and spin-restricted ensemble-DFT (REKS) methods perform along three important paths characterizing a model retinal chromophore (the penta-2,4-dieniminium cation) in a region of near-degeneracy (close to a conical intersection) with respect to reference high-level multiconfigurational wave function methods. If GKS-DFT correctly describes the closed-shell charge transfer state, only TDDFT and REKS approaches give access to the open-shell diradical, one which sometimes corresponds to the electronic ground state. It is demonstrated that the main drawback of the usual DFT-based methods lies in the absence of interactions between the charge transfer and the diradicaloid configurations. Hence, we test a new computational scheme based on the State-averaged REKS (SA-REKS) approach, which explicitly includes these interactions into account. The State-Interaction SA-REKS (SI-SA-REKS) method significantly improves on the REKS and the SA-REKS results for the target system. The similarities and differences between DFT and wave function-based approaches are analyzed according to (1) the active space dimensions of the wave function-based methods and (2) the relative electronegativities of the allyl and protonated Schiff base moieties.
منابع مشابه
Conical Intersection and Potential Energy Surface Features of a Model Retinal Chromophore: Comparison of EOM-CC and Multireference Methods.
This work investigates the performance of equation-of-motion coupled-cluster (EOM-CC) methods for describing the changes in the potential energy surfaces of the penta-2,4-dieniminium cation, a reduced model of the retinal chromophore of visual pigments, due to dynamical electron correlation effects. The ground-state wave function of this model includes charge-transfer and diradical configuratio...
متن کاملMicroscopic Parameters in the Excited State of Toluene and Some of Its Haloderavatives
The Ultraviolet-visible (UV) spectra of toluene, ortho-bromo and para-bromo toluene in different solvents have been studied. The electric dipole moments and polarizabilities in the molecular excited electronic states were determined. It was found that the electric dipole moments for the excited states (µ*) and the ground states (µ) of these compounds are equal, and the change in dipole moment i...
متن کاملLuminescence properties of flexible conjugated dyes
In this licentiate thesis the luminescence properties of two flexible conjugated dyes have been studied. The first, Pt1, is a platinum(II) acetylide chromophore used in optical power limiting materials. The second is a set of optical probes known as luminescent conjugated oligothiophenes (LCOs), which are used to detect and characterize the protein structures associated with amyloid diseases su...
متن کاملStudy of Photoisomerization in Cis-Retinal as a Natural Photo Switch in Vision Using Density Functional Theory
In the present study, theoretical chemical reactivates Photo isomerization in Cis-Retinal as a Natural Photo switch in Vision. DFT hybrid functional, B3LYP and, post-HF method, were the theoretical methods applied utilizing G09 software. 6-31G+ (d,p) basis set employed for structural optimizations, and single point computations performed using B3LYP/6-31G+(d,p). The isomers cis molecule retinal...
متن کاملDynamic Electron Correlation Effects on the Ground State Potential Energy Surface of a Retinal Chromophore Model.
The ground state potential energy surface of the retinal chromophore of visual pigments (e.g., bovine rhodopsin) features a low-lying conical intersection surrounded by regions with variable charge-transfer and diradical electronic structures. This implies that dynamic electron correlation may have a large effect on the shape of the force fields driving its reactivity. To investigate this effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 9 9 شماره
صفحات -
تاریخ انتشار 2013